二叉树遍历非递归实现
先序遍历
题目链接
https://leetcode.cn/problems/binary-tree-preorder-traversal/
思路分析
中序遍历的顺序是:中、左、右
利用栈的特点,后进先出,则进栈顺序为:先压入根节点,弹出根节点,同时将左右子树节点进栈,先压入右子树,再压入左子树
代码实现
java
class Solution {
public List<Integer> preorderTraversal(TreeNode head) {
List<Integer> ans = new ArrayList<>();
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
// 将根节点入栈
stack.push(head);
while (!stack.isEmpty()) {
// 根节点弹出,将左右子树根节点入栈
// 根据栈的特点,先压入右子树节点,后压入左子树节点
head = stack.pop();
ans.add(head.val);
if (head.right != null) {
stack.push(head.right);
}
if (head.left != null) {
stack.push(head.left);
}
}
}
return ans;
}
}中序遍历
题目链接
https://leetcode.cn/problems/binary-tree-inorder-traversal/
思路分析
(1)先处理左子树,递归遍历到头,将节点入栈
(2)若左子树为空,弹出栈顶元素,处理右子树(指针来到右子树)
(3)右子树的处理方式又是延续(1)的方法,先处理左子树......
代码实现
java
class Solution {
public List<Integer> inorderTraversal(TreeNode head) {
List<Integer> ans = new ArrayList<>();
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
// 栈不为空 || 子树不为空
while (!stack.isEmpty() || head != null) {
// 只要左树不为空,一路把左树入栈
if (head != null) {
stack.push(head);
head = head.left;
} else {
// 左树为空,弹出根节点,处理右子树
head = stack.pop();
ans.add(head.val);
head = head.right;
}
}
}
return ans;
}
}后序遍历
题目链接
https://leetcode.cn/problems/binary-tree-postorder-traversal/
思路分析
(1)两个栈实现
先序遍历顺序:中、左、右
后序遍历顺序:左、右、中
根据栈的特点,后进先出,先压左,再压右,节点顺序:中、右、左
将该节点顺序反转后即为后序遍历顺序,这里可以借助一个栈来实现,将弹出的元素放到新的栈中
遍历完成后,把新栈中的元素全部依次弹出,即可得到后序遍历顺序
(2)一个栈实现
先将根节点入栈
先处理左树,再处理右树,左树、右树 没有 或者 都处理过了,打印栈顶元素,head 来到该元素的位置
在下一轮遍历中,head 表示上一轮打印的节点,也可以理解为 head 指针充当哨兵的作用,用来标记左右子树是否处理过
两个栈实现
java
class Solution {
public List<Integer> postorderTraversal(TreeNode head) {
List<Integer> ans = new ArrayList<>();
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
Stack<TreeNode> collect = new Stack<>();
stack.push(head);
while (!stack.isEmpty()) {
head = stack.pop();
// 将出栈节点压入新栈,出栈顺序,中、右、左 --> 左、右、中
collect.push(head);
// 先压左,再压右,出栈顺序--> 中、右、左
if (head.left != null) {
stack.push(head.left);
}
if (head.right != null) {
stack.push(head.right);
}
}
while (!collect.isEmpty()) {
ans.add(collect.pop().val);
}
}
return ans;
}
}一个栈实现(推荐)
java
class Solution {
public List<Integer> postorderTraversal(TreeNode head) {
List<Integer> ans = new ArrayList<>();
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
stack.push(head);
// 如果始终没有打印过节点,head 就一直是头节点
// 一旦打印过节点,head 就变成打印节点
// 之后 head 的含义 : 上一次打印的节点
while (!stack.isEmpty()) {
TreeNode cur = stack.peek();
if (cur.left != null && head != cur.left && head != cur.right) {
// 有左树且左树没处理过
stack.push(cur.left);
} else if (cur.right != null && head != cur.right) {
// 有右树且右树没处理过
stack.push(cur.right);
} else {
// 左树、右树 没有 或者 都处理过了
ans.add(cur.val);
head = stack.pop();
}
}
}
return ans;
}
}本节测试代码
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
// 不用递归,用迭代的方式实现二叉树的三序遍历
public class BinaryTreeTraversalIteration {
public static class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int v) {
val = v;
}
}
// 先序打印所有节点,非递归版
public static void preOrder(TreeNode head) {
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
stack.push(head);
while (!stack.isEmpty()) {
head = stack.pop();
System.out.print(head.val + " ");
if (head.right != null) {
stack.push(head.right);
}
if (head.left != null) {
stack.push(head.left);
}
}
System.out.println();
}
}
// 中序打印所有节点,非递归版
public static void inOrder(TreeNode head) {
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
while (!stack.isEmpty() || head != null) {
if (head != null) {
stack.push(head);
head = head.left;
} else {
head = stack.pop();
System.out.print(head.val + " ");
head = head.right;
}
}
System.out.println();
}
}
// 后序打印所有节点,非递归版
// 这是用两个栈的方法
public static void posOrderTwoStacks(TreeNode head) {
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
Stack<TreeNode> collect = new Stack<>();
stack.push(head);
while (!stack.isEmpty()) {
head = stack.pop();
collect.push(head);
if (head.left != null) {
stack.push(head.left);
}
if (head.right != null) {
stack.push(head.right);
}
}
while (!collect.isEmpty()) {
System.out.print(collect.pop().val + " ");
}
System.out.println();
}
}
// 后序打印所有节点,非递归版
// 这是用一个栈的方法
public static void posOrderOneStack(TreeNode h) {
if (h != null) {
Stack<TreeNode> stack = new Stack<>();
stack.push(h);
// 如果始终没有打印过节点,h就一直是头节点
// 一旦打印过节点,h就变成打印节点
// 之后h的含义 : 上一次打印的节点
while (!stack.isEmpty()) {
TreeNode cur = stack.peek();
if (cur.left != null && h != cur.left && h != cur.right) {
// 有左树且左树没处理过
stack.push(cur.left);
} else if (cur.right != null && h != cur.right) {
// 有右树且右树没处理过
stack.push(cur.right);
} else {
// 左树、右树 没有 或者 都处理过了
System.out.print(cur.val + " ");
h = stack.pop();
}
}
System.out.println();
}
}
public static void main(String[] args) {
TreeNode head = new TreeNode(1);
head.left = new TreeNode(2);
head.right = new TreeNode(3);
head.left.left = new TreeNode(4);
head.left.right = new TreeNode(5);
head.right.left = new TreeNode(6);
head.right.right = new TreeNode(7);
preOrder(head);
System.out.println("先序遍历非递归版");
inOrder(head);
System.out.println("中序遍历非递归版");
posOrderTwoStacks(head);
System.out.println("后序遍历非递归版 - 2个栈实现");
posOrderOneStack(head);
System.out.println("后序遍历非递归版 - 1个栈实现");
}
}